BASIC PROPERTIES OF N-LANGUAGES

Martin Čermák

Doctoral Degree Programme (3), FIT BUT E-mail: icermak@fit.vutbr.cz

Supervised by: Alexander Meduna E-mail: meduna@fit.vutbr.cz

Abstract: This paper investigates theory of *n*-languages, where *n*-languages are given by sets of *n*-tuples of strings. In the present paper, two *n*-accepting move-restricted automata systems are defined. The automata systems are given by pushdown or finite automata with move-restricting set. By this set, the systems control which moves can be used at the same time. The paper discuses some basic properties of the class of *n*-languages defined by the automata systems.

Keywords: finite automata, pushdown automata, automata system, *n*–language, closure properties, control computation

1 INTRODUCTION

The theory of formal languages investigates various formal model systems using several cooperating components (see [1, 4, 7, 8]). Usually, the systems define ordinary formal languages. Among them, it is a canonical multigenerative context-free grammar system (see [5, 3, 2]), where each component generates its own string—that is, the grammar system generates *n*-touple of string (so-called *n*-string), and only if the generation succeed, then final strings are given from the *n*-string by a defined operation on the *n*-strings. A similar approaches was applied on pushdown automata, when two type of *n*-accepting restricted pushdown automata systems, so that the systems accept *n*-strings instead of ordinary strings, was defined in [9]. The *n*-accepting automata systems and the canonical multigenerative grammar systems open the new area of the formal language theory. This paper continues with researching this type of systems by introducing *n*-accepting finite automata systems, and discuses some basic properties of classes of so-called *n*-languages, which finite automata systems can recognize. Specifically, this paper investigates some closure properties and relationship between the class of *n*-languages defined by *n*-accepting restricted finite automata systems and the class of *n*-languages defined by *n*-accepting restricted finite automata systems and the class of *n*-languages defined by *n*-accepting restricted finite automata systems and the class of *n*-languages defined by *n*-accepting restricted finite automata systems and the class of *n*-languages defined by *n*-accepting restricted finite automata systems and the class of *n*-languages defined by *n*-accepting restricted finite automata systems and the class of *n*-languages defined by n-accepting restricted finite automata systems and the class of *n*-languages defined by n-accepting restricted finite automata systems and the class of *n*-languages defined by pushdown automata systems.

2 PRELIMINARIES

In this paper, we assume that the reader is familiar with formal language theory (see [6]).

For a set, Q, |Q| denotes the cardinality of Q. For an alphabet, V, V^* represents the free monoid generated by V. The identity of V^* is denoted by ε . Set $V^+ = V^* - \{\varepsilon\}$; algebraically, V^+ is thus the free semigroup generated by V. For $w \in V^*$, |w| denotes the length of w, w^R denotes the mirror image of w.

A *finite automaton* is a five-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where Q is a finite set of states, Σ is an alphabet, $q_0 \in Q$ is the initial state, δ is a finite set of rules of the form $qa \rightarrow p$, where $p, q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, $F \subseteq Q$ is a set of final states. A configuration of M is any word from $Q\Sigma^*$. For any configuration qay, where $y \in \Sigma^*$, $q \in Q$ and any $qa \rightarrow p \in \delta$, M makes a move from configuration qay to configuration py according to $qa \rightarrow p$, written as $qay \Rightarrow py[qa \rightarrow p]$, or, simply, $qay \Rightarrow py$. If $x, y \in Q\Sigma^*$ and m > 0, then $x \Rightarrow^m y$ if there exists a sequence $x_0 \Rightarrow x_1 \Rightarrow ... \Rightarrow x_m$, where $x_0 = x$ and $x_m = y$. Then we say $x \Rightarrow^+ y$ if there exists m > 0 such that $x \Rightarrow^m y$ and $x \Rightarrow^* y$ if x = y or $x \Rightarrow^+ y$. If $w \in \Sigma^*$ and $q_0 w \Rightarrow^* f$, where $f \in F$, then w is accepted by M and $q_0 w \Rightarrow^* f$ is an acceptance of w in M. The language of M is defined as $\mathcal{L}(M) = \{w \in \Sigma^* : q_0 w \Rightarrow^* f \text{ is an acceptance of } w\}$.

A pushdown automaton is a septuple $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, \emptyset)$, where Q is a finite set of states, Σ is an alphabet, $q_0 \in Q$ is the initial state, Γ is a pushdown alphabet, δ is a finite set of rules of the form $Zqa \rightarrow \gamma p$, where $p, q \in Q, Z \in \Gamma, a \in \Sigma \cup \{\varepsilon\}, \gamma \in \Gamma^*$ and $Z_0 \in \Gamma$ is the initial pushdown symbol. A configuration of M is any word from $\Gamma^*Q\Sigma^*$. For any configuration xAqay, where $x \in \Gamma^*, y \in \Sigma^*, q \in Q$ and any $Aqa \rightarrow \gamma p \in \delta$, M makes a move from configuration xAqay to configuration $x\gamma py$ according to $Aqa \rightarrow \gamma p$, written as $xAqay \Rightarrow x\gamma py [Aqa \rightarrow \gamma p]$, or, simply, $xAqay \Rightarrow x\gamma py$. If $x, y \in \Gamma^*Q\Sigma^*$ and m > 0, then $x \Rightarrow^m y$ if there exists a sequence $x_0 \Rightarrow x_1 \Rightarrow \ldots \Rightarrow x_m$, where $x_0 = x$ and $x_m = y$. Then we say $x \Rightarrow^+ y$ if there exists m > 0 such that $x \Rightarrow^m y$ and $x \Rightarrow^* y$ if x = y or $x \Rightarrow^+ y$. If $w \in \Sigma^*$ and $Z_0q_0w \Rightarrow^* f$, where $f \in Q$, then w is accepted by M and $Z_0q_0w \Rightarrow^* f$ is an acceptance of w in M. The language of M is defined as $\mathcal{L}(M) = \{w \in \Sigma^* : Z_0q_0w \Rightarrow^* f$ is an acceptance of $w\}$.

3 DEFINITIONS

3.1 *n*-Accepting automata systems

An *n*-accepting move-restricted finite automata system (*n*-MAM^{FA}) and *n*-accepting move-restricted pushdown automata system (*n*-MAM^{PDA}) are n + 1-tuples $\vartheta = (M_1 \dots, M_n, \Psi)$ with M_i as a finite automaton and pushdown automaton for all $i = 1, \dots, n$, respectively, and with Ψ as a finite set of *n*-tuples of the form (r_1, \dots, r_n) , where for each $j = 1, \dots, n$, $r_j \in \delta_j$ in M_j .

3.2 *n*-Configuration

Let *n* be a positive integer, $\vartheta = (M_1, \dots, M_n, \Psi)$ be an *n*-MAM^{FA} or *n*-MAM^{PDA}. An *n*-configuration is defined as an *n*-tuple $\chi = (x_1, \dots, x_n)$, where for all $i = 1, \dots, n, x_i$ is a configuration of M_i .

3.3 MOVE

Let *n* be a positive integer, $\vartheta = (M_1, \dots, M_n, \Psi)$ be an *n*-MAM^{FA} or *n*-MAM^{PDA}. Let $\chi = (x_1, \dots, x_n)$ and $\chi' = (x'_1, \dots, x'_n)$ be two *n*-configurations, for all $i = 1, \dots, n, x_i \Rightarrow x'_i[r_i]$ in M_i , and $(r_1, \dots, r_n) \in \Psi$. Then, ϑ moves from *n*-configuration χ to χ' , denoted $\chi \vdash \chi'$, and in the standard way, \vdash^* and \vdash^+ denote the transitive-reflexive and the transitive closure of \vdash , respectively.

3.4 *n*-LANGUAGE OF *n*-MAM^{FA}

Let *n* be a positive integer, $\vartheta = (M_1, \dots, M_n, \Psi)$ be an *n*-MAM^{FA} and all $i = 1, \dots, n, M_i = (Q_i, \Gamma_i, \delta_i, s_i, F_i)$ be a finite automaton. Let $\chi_0 = (s_1 \omega_1, \dots, s_n \omega_n)$ be the start *n*-configuration and $\chi_f = (q_1, \dots, q_n)$ be a finish *n*-configuration of *n*-MAM^{FA}, where for all $i = 1, \dots, n, q_i \in F_i, \omega_i \in \Sigma^*$. The *n*-language of *n*-accepting finite automata system is defined as $n \cdot L(\vartheta) = \{(\omega_1, \dots, \omega_n) : \chi_0 \vdash^* \chi_f\}$.

3.5 *n*-Language of *n*-MAM^{PDA}

Let *n* be a positive integer, $\vartheta = (M_1, \dots, M_n, \Psi)$ be an *n*-MAM^{PDA} and for all $i = 1, \dots, n$, $M_i = (Q_i, \Sigma, \Gamma_i, \delta_i, s_i, z_{i,0}, \emptyset)$ be a pushdown automaton accepting input strings by empty pushdown. Let $\chi_0 = (z_{1,0}s_1\omega_1, \dots, z_{n,0}s_n\omega_n)$ be the start *n*-configuration and $\chi_f = (q_1, \dots, q_n)$ be a finish *n*-configuration of *n*-MAM^{PDA}, where for all $i = 1, \dots, n$, $q_i \in Q_i$, $\omega_i \in \Sigma^*$. The *n*-language of *n*-accepting pushdown automata system is defined as n- $L(\vartheta) = \{(\omega_1, \dots, \omega_n) : \chi_0 \vdash^* \chi_f\}$.

3.6 CLASSES OF *n*-LANGUAGES

- $\mathscr{L}(n-MAM^{FA}) = \{n-L : n-L \text{ is an } n-\text{language of } n-MAM^{FA}\}$
- $\mathscr{L}(n-MAM^{PDA}) = \{n-L: n-L \text{ is an } n-\text{language of } n-MAM^{PDA}\}$

4 RESULTS

4.1 **THEOREM**

If L_1 and $L_2 \in \mathscr{L}(n-MAM^{FA})$, then $L_1 \cup L_2 \in \mathscr{L}(n-MAM^{FA})$.

Proof: Consider two *n*-languages L_1 and L_2 . If L_1 and $L_2 \in \mathscr{L}(n-MAM^{FA})$, then there are *n*-MAM^{FA}s, $\vartheta_1 = (M_{1,1}, \ldots, M_{1,n}, \Psi_1)$ and $\vartheta_2 = (M_{2,1}, \ldots, M_{2,n}, \Psi_2)$, such that $L_1 = L(\vartheta_1), L_2 = L(\vartheta_2)$ and for all i = 1, 2 and $j = 1, \ldots, n, M_{i,j} = (Q_{i,j}, \Sigma_{i,j}, \delta_{i,j}, s_{i,j}, F_{i,j})$ is a component of ϑ_i . For these two automata systems, we can construct $\vartheta_{12} = (M_{12,1}, \ldots, M_{12,n}, \Psi_{12})$, with $M_{12,j} = (Q_{12,j}, \Sigma_{12,j}, \delta_{12,j}, s_{12,j}, F_{12,j})$, in the following way: for all i = 1, 2 and $j = 1, \ldots, n, Q_{12,j} = Q_{1,j} \cup Q_{2,j} \cup \{s_{12,j}\}$, where $s_{12,j}$ is the new start state of *j*th automaton, $\delta_{12,j} = \delta_{1,j} \cup \delta_{2,j} \cup \{p_{1,j} : s_{12,j} \rightarrow s_{1,j}, p_{2,j} : s_{12,j} \rightarrow s_{2,j}\}$, $\Sigma_{12,j} = \Sigma_{1,j} \cup \Sigma_{2,j}, F_{12,j} = F_{1,j} \cup F_{2,j}$, and $\Psi_{12} = \Psi_1 \cup \Psi_2 \cup \{(p_{1,1}, \ldots, p_{1,n}), (p_{2,1}, \ldots, (p_{2,n})\}$. From set Ψ_{12} follows that the first move has to be $(s_{12,1}\omega_1, \ldots, s_{12,n}\omega_n) \vdash (s_{i,1}\omega_1, \ldots, s_{i,n}\omega_n)$ for i = 1, 2, and for $\omega_j \in \Sigma_{12,j}$ with $j = 1, \ldots, n$. Therefore, $(\omega_1, \ldots, \omega_n)$ is in $L(\vartheta_{12})$ iff $(\omega_1, \ldots, \omega_n) \in L(\vartheta_1)$ or $(\omega_1, \ldots, \omega_n) \in L(\vartheta_2)$ —that is, $(\omega_1, \ldots, \omega_n) \in L(\vartheta_{12})$ iff $(\omega_1, \ldots, \omega_n) \in L_1 \cup L_2$.

4.2 LEMMA

For $n \ge 2$, *n*-language $n-L = \{(a^i b^j, a^j b^i(\varepsilon)^{(n-2)}) : i, j = 0, 1, \dots, m\}$ is not in $\mathcal{L}(n-MAM^{FA})$.

Proof Idea: From definition of *n*-accepting move-restricted finite automata system, it can be seen that only chance how to compare symbols through components is read them step by step at the same time (or in a quasi parallel way). Hence, for comparing *as* in the first component and *bs* in the second one, the second component has to skip all *as*, and then the system can compare *as* and *bs*. After this, there is no possibility how to compare *as* in the second component with *bs* in the first component because finite automata can not be returned on the start position. Similar problem becomes when the system starts with comparing *bs* in the first component and *as* in the second one. The other components can not help, because they read no input symbols. Hence, *n*-*L* is not belong to $\mathscr{L}(n-MAM^{FA})$.

4.3 COROLLARY

 $\mathscr{L}(n-MAM^{FA})$ for all $n \ge 2$, is not close under intersection.

Proof: Consider two 2–languages $L_1 = \{(a^i b^j, a^j b^k) : i, j, k \ge 0\}$ and $L_2 = \{(a^i b^j, a^k b^i) : i, j, k \ge 0\}$. Both of them belong to $\mathscr{L}(n-MAM^{FA})$, because we can construct 2–MAM^{FA}s $\vartheta_1 = (M_1, M_2, \Psi_1)$ and $\vartheta_2 = (M_1, M_2, \Psi_2)$ such that $L(\vartheta_1) = L_1$ and $L(\vartheta_2) = L_2$. All four automata are given by the definition $M = (\{q_1, q_2\}, \{a, b\}, \{r_1 : q_1 a \to q_1, r_2 : q_1 \to q_1, r_3 : q_1 b \to q_2, r_4 : q_2 b \to q_2, r_5 : q_2 \to q_2\}$, $s_i, \{q_1, q_2\}$), and $\Psi_1 = \{(r_1, r_2), (r_3, r_1), (r_4, r_1), (r_5, r_3), (r_5, r_4)\}$ and $\Psi_2 = \{(p, q) : (q, p) \in \Psi_1\}$. The intersection of $L(\vartheta_1)$ and $L(\vartheta_2)$ is 2–language $L_3 = \{(a^i b^j, a^j b^i) : i, j = 0, 1, \dots, m\}$. Lemma 4.2 says that $L_3 \notin \mathscr{L}(n-MAM^{FA})$, and therefore, $\mathscr{L}(2-MAM^{FA})$ is not close under intersection.

In general, for $n \ge 2$, consider *n*-languages $K_1 = \{(a^i b^j, a^j b^k(, \varepsilon)^{n-2}) : i, j, k \ge 0\}$ and $K_2 = \{(a^i b^j, a^k b^i(, \varepsilon)^{n-2}) : i, j, k \ge 0\}$. From Lemma 4.2, $K_1 \cap K_2 \notin \mathscr{L}(n-\mathrm{MAM}^{\mathrm{FA}})$.

4.4 COROLLARY

 $\mathscr{L}(n-MAM^{FA})$ for all $n \ge 2$ is not close under complementation.

Proof: By contradiction. Suppose that $\mathscr{L}(n-MAM^{FA})$ for all $n \ge 2$ is close under complementation. Let $L_1, L_2 \in \mathscr{L}(n-MAM^{FA})$. From Theorem 4.1 it follows that $L_1 \cup L_2 \in \mathscr{L}(n-MAM^{FA})$, and by supposition, $\overline{(L_1 \cup L_2)} \in \mathscr{L}(n-MAM^{FA})$ as well. From De Morgan's law, $\overline{(L_1 \cup L_2)} = (\overline{L_1} \cap \overline{L_2})$, but it is contradiction, because $\mathscr{L}(n-MAM^{FA})$ for all $n \ge 2$, is not close under intersection.

4.5 COROLLARY

 $\mathscr{L}(\mathit{n}\text{-}\mathsf{MAM}^{FA}) \subsetneq \mathscr{L}(\mathit{n}\text{-}\mathsf{MAM}^{PDA}).$

Proof: The inclusion $\mathscr{L}(n-MAM^{FA}) \subseteq \mathscr{L}(n-MAM^{PDA})$ is clear from the definition of $n-MAM^{FA}$ and $n-MAM^{PDA}$. It remains to prove that $\mathscr{L}(n-MAM^{FA}) \neq \mathscr{L}(n-MAM^{PDA})$.

Consider 2–MAM^{PDA}, $\vartheta = (M_1, M_2, \Psi_1)$ with $\Psi = \{(1, 1), (2, 2), (3, 2), (4, 3), (5, 3), (6, 3), (7, 3),$ (8,4),(9,1) and the pushdown automata defined in the following way: $M_1 = (\{s,q\},\{a,b\},\{\#,a\}$ $\{1.\#s \rightarrow s, 2.\#sa \rightarrow \#as, 3.asa \rightarrow aas, 4.\#sb \rightarrow \#q, 5.asb \rightarrow \#q, 6.\#qb \rightarrow \#q, 7.aqb \rightarrow \#q, 8.aq \rightarrow q, 8.aq \rightarrow q,$ $9.#q \rightarrow q$, $s, \#, \emptyset$) and $M_2 = (\{s\}, \{a, b\}, \{\#\}, \{1.#s \rightarrow s, 2.#s \rightarrow \#s, 3.#sa \rightarrow \#s, 4.\#sb \rightarrow \#s\}, s, \#, \emptyset)$. It is not hard to see that ϑ define 2-language $L = \{(a^i b^j, a^j b^i) : i, j = 0, 1, \dots, m\}$ and works in this way: first, automaton M_2 loops in state s and reads no symbol, while M_1 shifts all as onto the pushdown. After pushing all as from the M_1 's input onto the pushdown, M_1 and M_2 read bs and as, respectively, and by reading them at the same time, automata compare their number. If there is more as in M_2 's input than bs in M_1 's input, then the automata system is stoped and input is not accepted. Otherwise, M_1 skips to the other state and ϑ continues with comparing a's on the M_1 's pushdown and b's in the M_2 's input by removing as from the pushdown in M_1 and reading b's from M_2 's input. Only if the input was of the form $(a^i b^j, a^j b^i)$ with i, j = 0, 1, ..., m, the automata system removes symbols # from M_1 's and M_2 's pushdowns, and ϑ accepts. Because Lemma 4.2 says that $L = \{(a^i b^j, a^j b^i) : i, j = 0\}$ $(0, 1, \dots, m)$ is not in $\mathscr{L}(2-MAM^{FA})$, $\mathscr{L}(2-MAM^{FA}) \neq \mathscr{L}(2-MAM^{PDA})$. In general, for $n \geq 2$, there are *n*-languages $L = \{(a^i b^j, a^j b^i(, \epsilon)^{(n-2)}) : i, j = 0, 1, ..., m\}$. These *n*-languages can be given by n-MAM^{PDA}, where the first two components are defined in the same way as M_1 and M_2 was. The other components loops without reading any symbols. Only in the last step, automata remove symbols # from their pushdowns. Hence, $L = \{(a^i b^j, a^j b^i(, \epsilon)^{(n-2)}) : i, j = 0, 1, ..., m\} \in \mathcal{L}(n-\text{MAM}^{\text{PDA}})$ that is, $\mathscr{L}(n-MAM^{FA}) \neq \mathscr{L}(n-MAM^{PDA})$.

4.6 **THEOREM**

If L_1 and $L_2 \in \mathscr{L}(n-MAM^{FA})$, then $L_1 \cdot L_2 \in \mathscr{L}(n-MAM^{FA})$, where $L_1 \cdot L_2 = \{(w_1w'_1, \dots, w_nw'_n) : (w_1, \dots, w_n) \in L_1 \text{ and } (w'_1, \dots, w'_n) \in L_2\}.$

Proof: Consider two *n*-languages L_1 and L_2 . If L_1 and $L_2 \in \mathscr{L}(n-MAM^{FA})$, then there are *n*-MAM^{FA}s, $\vartheta_1 = (M_{1,1}, \dots, M_{1,n}, \Psi_1)$ and $\vartheta_2 = (M_{2,1}, \dots, M_{2,n}, \Psi_2)$, such that $L_1 = L(\vartheta_1), L_2 = L(\vartheta_2)$ and for all i = 1, 2 and $j = 1, \dots, n, M_{i,j} = (Q_{i,j}, \Sigma_{i,j}, \delta_{i,j}, s_{i,j}, F_{i,j})$ is a component of ϑ_i . For these two automata systems, we can construct $\vartheta_{12} = (M_{12,1}, \dots, M_{12,n}, \Psi_{12})$, with $M_{12,j} = (Q_{12,j}, \Sigma_{12,j}, \delta_{12,j}, s_{1,j}, F_{2,j}))$, in the following way: for every i = 1, 2 and $j = 1, \dots, n, Q_{12,j} = Q_{1,j} \cup Q_{2,j}, \delta_{12,j} = \delta_{1,j} \cup \delta_{2,j} \cup \{p_j.f_j \rightarrow s_{2,j} : f_j \in F_{1,j}\}, \Psi_{12} = \Psi_1 \cup \Psi_2 \cup \{(p_1, \dots, p_n)\}, \text{ and } \Sigma_{12,j} = \Sigma_{1,j} \cup \Sigma_{2,j}$. From Definition 3.4, $(w_1, \dots, w_n) \in L_1$ iff $(s_{1,1}w_1, \dots, s_{1,n}w_n) \vdash^* (f_1, \dots, f_n)$, where for all $i = 1, \dots, n, f_i \in F_{1,i}$, in ϑ_1 . Clearly, $(s_{1,1}w_1, \dots, s_{1,n}w_n) \vdash^* (f_1, \dots, f_n)$ in ϑ_{12} as well, and obviously, $(s_{1,1}w_1w'_1, \dots, s_{1,n}w_n'_n) \vdash (s_{2,1}w'_1, \dots, s_{2,n}w'_n)$. Naturaly, $(s_{2,1}w'_1, \dots, s_{2,n}w'_n) \vdash^* (f'_1, \dots, f'_n)$ with $f'_i \in F_{2,i}$ in ϑ_2 . Hence, $(s_{1,1}w_1w'_1, \dots, s_{2,n}w'_n)$.

 $\ldots, s_{1,n}w_nw'_n \vdash^* (f'_1, \ldots, f'_n)$ in ϑ_{12} . The theorem holds.

5 CONCLUSION

In this paper, we defined the new type of *n*-accepting move-restricted automata system with finite automata. On the class of *n*-languages defined by the system, we showed some fundamental closure properties. Specifically, the class of *n*-languages defined by *n*-accepting move-restricted pushdown automata system is closed over concatenation and union, and on the other hand, it is not closed over intersection and complement. Furthermore, we showed that the *n*-accepting move-restricted finite automata system is weaker than the *n*-accepting move-restricted pushdown automata system. Beside of examined closure properties, there are many other closer properties, which make an open research area. Especially, very useful it can be closure properties over *n*-union, *n*-intersection, and *n*-shuffle, where *n* before operators means that operators are used on each component. For example, *n*-union of $L_1 = \{(w_1, \ldots, w_n)\}$ and $L_2 = \{(w'_1, \ldots, w'_n)\}$ is *n*-language $L_3 = \{(x_1, \ldots, x_n) : x_i \in \{w_i, w'_i\}$ for all $i = 1, \ldots, n\}$.

6 ACKNOWLEDGEMENTS

This work was supported by the research plan MSM0021630528 and by MŠMT grant MEB041003.

REFERENCES

- [1] R. Alur. Formal analysis of hierarchical state machines. *Lecture Notes in Computer Science*, 2772/2004:434–435, 2004.
- [2] R. Lukáš. Power of multigenerative grammar systems. In Second Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS 2006), pages 99–104, 2006.
- [3] R. Lukáš and A. Meduna. Multigenerative grammar systems. In Pre-proceedings 1st Doctoral Workshop on Mathematical and Engineering Methods in Comupter Science (MEMICS 2005), pages 85–87. Faculty of Informatics MU, 2005.
- [4] C. Martín and V. Mitrana. Parallel communicating automata systems. *Journal of Applied Mathematics and Computing*, pages 237–257, 2008.
- [5] A. Meduna and R. Lukáš. Multigenerative grammar systems. *Schedae Informaticae*, 2006(15):175–188, 2006.
- [6] M. Meduna. Automata and Languages: Theory and Applications. Springer-Verlag, London, 2000.
- [7] M. H. ter Beek, E. Csuhaj-Varjú, and V. Mitrana. Teams of pushdown automata. Int. J. Comput. Math., 81(2):141–156, 2004.
- [8] M. Čermák. Power decreasing derivation restriction in grammar systems. In *Proceedings of the* 15th Conference and Competition STUDENT EEICT 2009 Volume 4, pages 385–389. Faculty of Information Technology BUT, 2009.
- [9] M. Čermák. Multilanguages and multiaccepting automata system. In Proceedings of the 16th Conference and Competition STUDENT EEICT 2010 Volume 5, pages 146–150. Faculty of Information Technology BUT, 2010.