BASIC PROPERTIES OF N-LANGUAGES

Martin Čermák
Doctoral Degree Programme (3), FIT BUT
E-mail: icermak@fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract

This paper investigates theory of n-languages, where n-languages are given by sets of $n-$ tuples of strings. In the present paper, two n-accepting move-restricted automata systems are defined. The automata systems are given by pushdown or finite automata with move-restricting set. By this set, the systems control which moves can be used at the same time. The paper discuses some basic properties of the class of n-languages defined by the automata systems.

Keywords: finite automata, pushdown automata, automata system, n-language, closure properties, control computation

1 INTRODUCTION

The theory of formal languages investigates various formal model systems using several cooperating components (see [1, 4, 7, 8]). Usually, the systems define ordinary formal languages. Among them, it is a canonical multigenerative context-free grammar system (see [5, 3, 2]), where each component generates its own string-that is, the grammar system generates n-touple of string (so-called n-string), and only if the generation succeed, then final strings are given from the n-string by a defined operation on the n-strings. A similar approaches was applied on pushdown automata, when two type of n-accepting restricted pushdown automata systems, so that the systems accept n-strings instead of ordinary strings, was defined in [9]. The n-accepting automata systems and the canonical multigenerative grammar systems open the new area of the formal language theory. This paper continues with researching this type of systems by introducing n-accepting finite automata system, and discuses some basic properties of classes of so-called n-languages, which finite automata systems can recognize. Specifically, this paper investigates some closure properties and relationship between the class of n-languages defined by n-accepting restricted finite automata systems and the class of n-languages defined by pushdown automata systems.

2 PRELIMINARIES

In this paper, we assume that the reader is familiar with formal language theory (see [6]).
For a set, $Q,|Q|$ denotes the cardinality of Q. For an alphabet, V, V^{*} represents the free monoid generated by V. The identity of V^{*} is denoted by ε. Set $V^{+}=V^{*}-\{\varepsilon\}$; algebraically, V^{+}is thus the free semigroup generated by V. For $w \in V^{*},|w|$ denotes the length of w, w^{R} denotes the mirror image of w.

A finite automaton is a five-tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where Q is a finite set of states, Σ is an alphabet, $q_{0} \in Q$ is the initial state, δ is a finite set of rules of the form $q a \rightarrow p$, where $p, q \in Q, a \in \Sigma \cup\{\varepsilon\}$, $F \subseteq Q$ is a set of final states. A configuration of M is any word from $Q \Sigma^{*}$. For any configuration qay, where $y \in \Sigma^{*}, q \in Q$ and any $q a \rightarrow p \in \delta, M$ makes a move from configuration qay to configuration $p y$ according to $q a \rightarrow p$, written as $q a y \Rightarrow p y[q a \rightarrow p]$, or, simply, qay $\Rightarrow p y$. If $x, y \in Q \Sigma^{*}$ and $m>0$,
then $x \Rightarrow^{m} y$ if there exists a sequence $x_{0} \Rightarrow x_{1} \Rightarrow \ldots \Rightarrow x_{m}$, where $x_{0}=x$ and $x_{m}=y$. Then we say $x \Rightarrow^{+} y$ if there exists $m>0$ such that $x \Rightarrow^{m} y$ and $x \Rightarrow^{*} y$ if $x=y$ or $x \Rightarrow^{+} y$. If $w \in \Sigma^{*}$ and $q_{0} w \Rightarrow^{*} f$, where $f \in F$, then w is accepted by M and $q_{0} w \Rightarrow^{*} f$ is an acceptance of w in M. The language of M is defined as $\mathcal{L}(M)=\left\{w \in \Sigma^{*}: q_{0} w \Rightarrow^{*} f\right.$ is an acceptance of $\left.w\right\}$.
A pushdown automaton is a septuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, \oslash\right)$, where Q is a finite set of states, Σ is an alphabet, $q_{0} \in Q$ is the initial state, Γ is a pushdown alphabet, δ is a finite set of rules of the form $Z q a \rightarrow \gamma p$, where $p, q \in Q, Z \in \Gamma, a \in \Sigma \cup\{\varepsilon\}, \gamma \in \Gamma^{*}$ and $Z_{0} \in \Gamma$ is the initial pushdown symbol. A configuration of M is any word from $\Gamma^{*} Q \Sigma^{*}$. For any configuration $x A q a y$, where $x \in \Gamma^{*}, y \in \Sigma^{*}, q \in Q$ and any Aqa $\rightarrow \gamma p \in \delta, M$ makes a move from configuration $x A q a y$ to configuration $x \gamma p y$ according to $A q a \rightarrow \gamma p$, written as $x A q a y \Rightarrow x \gamma p y[A q a \rightarrow \gamma p]$, or, simply, $x A q a y \Rightarrow x \gamma p y$. If $x, y \in \Gamma^{*} Q \Sigma^{*}$ and $m>0$, then $x \Rightarrow^{m} y$ if there exists a sequence $x_{0} \Rightarrow x_{1} \Rightarrow \ldots \Rightarrow x_{m}$, where $x_{0}=x$ and $x_{m}=y$. Then we say $x \Rightarrow^{+} y$ if there exists $m>0$ such that $x \Rightarrow^{m} y$ and $x \Rightarrow^{*} y$ if $x=y$ or $x \Rightarrow^{+} y$. If $w \in \Sigma^{*}$ and $Z_{0} q_{0} w \Rightarrow^{*} f$, where $f \in Q$, then w is accepted by M and $Z_{0} q_{0} w \Rightarrow^{*} f$ is an acceptance of w in M. The language of M is defined as $\mathcal{L}(M)=\left\{w \in \Sigma^{*}: Z_{0} q_{0} w \Rightarrow^{*} f\right.$ is an acceptance of $\left.w\right\}$.

3 DEFINITIONS

3.1 -ACCEPTING AUTOMATA SYSTEMS

An n-accepting move-restricted finite automata system $\left(n-\mathrm{MAM}^{\mathrm{FA}}\right.$) and n-accepting move-restricted pushdown automata system $\left(n-\mathrm{MAM}^{\mathrm{PDA}}\right)$ are $n+1$-tuples $\vartheta=\left(M_{1} \ldots, M_{n}, \Psi\right)$ with M_{i} as a finite automaton and pushdown automaton for all $i=1, \ldots, n$, respectively, and with Ψ as a finite set of n-tuples of the form $\left(r_{1}, \ldots, r_{n}\right)$, where for each $j=1, \ldots, n, r_{j} \in \delta_{j}$ in M_{j}.

3.2 -Configuration

Let n be a positive integer, $\vartheta=\left(M_{1}, \ldots, M_{n}, \Psi\right)$ be an $n-$ MAM $^{\mathrm{FA}}$ or $n-\mathrm{MAM}^{\mathrm{PDA}}$. An n-configuration is defined as an n-tuple $\chi=\left(x_{1}, \ldots, x_{n}\right)$, where for all $i=1, \ldots, n, x_{i}$ is a configuration of M_{i}.

3.3 Move

Let n be a positive integer, $\vartheta=\left(M_{1}, \ldots, M_{n}, \Psi\right)$ be an $n-\mathrm{MAM}^{\mathrm{FA}}$ or $n-\mathrm{MAM}^{\text {PDA }}$. Let $\chi=\left(x_{1}, \ldots\right.$, $\left.x_{n}\right)$ and $\chi^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ be two n-configurations, for all $i=1, \ldots, n, x_{i} \Rightarrow x_{i}^{\prime}\left[r_{i}\right]$ in M_{i}, and $\left(r_{1}, \ldots, r_{n}\right) \in$ Ψ. Then, ϑ moves from n-configuration χ to χ^{\prime}, denoted $\chi \vdash \chi^{\prime}$, and in the standard way, \vdash^{*} and \vdash^{+} denote the transitive-reflexive and the transitive closure of \vdash, respectively.

$3.4 n$-LANGUAGE OF n-MAM ${ }^{\text {FA }}$

Let n be a positive integer, $\vartheta=\left(M_{1}, \ldots, M_{n}, \Psi\right)$ be an $n-\mathrm{MAM}^{\mathrm{FA}}$ and all $i=1, \ldots, n, M_{i}=\left(Q_{i}, \Gamma_{i}, \delta_{i}\right.$, $\left.s_{i}, F_{i}\right)$ be a finite automaton. Let $\chi_{0}=\left(s_{1} \omega_{1}, \ldots, s_{n} \omega_{n}\right)$ be the start n-configuration and $\chi_{f}=\left(q_{1}, \ldots, q_{n}\right)$ be a finish n-configuration of $n-\mathrm{MAM}^{\mathrm{FA}}$, where for all $i=1, \ldots, n, q_{i} \in F_{i}, \omega_{i} \in \Sigma^{*}$. The n-language of n-accepting finite automata system is defined as $n-L(\vartheta)=\left\{\left(\omega_{1}, \ldots, \omega_{n}\right): \chi_{0} \vdash^{*} \chi_{f}\right\}$.

$3.5 n$-LANGUAGE OF $n-$ MAM $^{\text {PDA }}$

Let n be a positive integer, $\vartheta=\left(M_{1}, \ldots, M_{n}, \Psi\right)$ be an $n-\mathrm{MAM}^{\mathrm{PDA}}$ and for all $i=1, \ldots, n, M_{i}=$ ($\left.Q_{i}, \Sigma, \Gamma_{i}, \delta_{i}, s_{i}, z_{i, 0}, \emptyset\right)$ be a pushdown automaton accepting input strings by empty pushdown. Let $\chi_{0}=\left(z_{1,0} s_{1} \omega_{1}, \ldots, z_{n, 0} s_{n} \omega_{n}\right)$ be the start n-configuration and $\chi_{f}=\left(q_{1}, \ldots, q_{n}\right)$ be a finish n-configuration of $n-\mathrm{MAM}^{\mathrm{PDA}}$, where for all $i=1, \ldots, n, q_{i} \in Q_{i}, \omega_{i} \in \Sigma^{*}$. The n-language of n-accepting pushdown automata system is defined as $n-L(\vartheta)=\left\{\left(\omega_{1}, \ldots, \omega_{n}\right): \chi_{0} \vdash^{*} \chi_{f}\right\}$.

3.6 Classes of n-Languages

- $\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)=\left\{n-L: n-L\right.$ is an n-language of $\left.n-\mathrm{MAM}^{\mathrm{FA}}\right\}$
- $\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{PDA}}\right)=\left\{n-L: n-L\right.$ is an n-language of $\left.n-\mathrm{MAM}^{\mathrm{PDA}}\right\}$

4 RESULTS

4.1 Theorem

If L_{1} and $L_{2} \in \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$, then $L_{1} \cup L_{2} \in \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$.
Proof: Consider two n-languages L_{1} and L_{2}. If L_{1} and $L_{2} \in \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$, then there are $n-$ $\mathrm{MAM}^{\mathrm{FA}}{ }_{\mathrm{s},} \vartheta_{1}=\left(M_{1,1}, \ldots, M_{1, n}, \Psi_{1}\right)$ and $\vartheta_{2}=\left(M_{2,1}, \ldots, M_{2, n}, \Psi_{2}\right)$, such that $L_{1}=L\left(\vartheta_{1}\right), L_{2}=L\left(\vartheta_{2}\right)$ and for all $i=1,2$ and $j=1, \ldots, n, M_{i, j}=\left(Q_{i, j}, \Sigma_{i, j}, \delta_{i, j}, s_{i, j}, F_{i, j}\right)$ is a component of ϑ_{i}. For these two automata systems, we can construct $\vartheta_{12}=\left(M_{12,1}, \ldots, M_{12, n}, \Psi_{12}\right)$, with $M_{12, j}=\left(Q_{12, j}, \Sigma_{12, j}, \delta_{12, j}\right.$, $\left.s_{12, j}, F_{12, j}\right)$), in the following way: for all $i=1,2$ and $j=1, \ldots, n, Q_{12, j}=Q_{1, j} \cup Q_{2, j} \cup\left\{s_{12, j}\right\}$, where $s_{12, j}$ is the new start state of j th automaton, $\delta_{12, j}=\delta_{1, j} \cup \delta_{2, j} \cup\left\{p_{1, j}: s_{12, j} \rightarrow s_{1, j}, p_{2, j}: s_{12, j} \rightarrow s_{2, j}\right\}$, $\Sigma_{12, j}=\Sigma_{1, j} \cup \Sigma_{2, j}, F_{12, j}=F_{1, j} \cup F_{2, j}$, and $\Psi_{12}=\Psi_{1} \cup \Psi_{2} \cup\left\{\left(p_{1,1}, \ldots, p_{1, n}\right),\left(p_{2,1}, \ldots,\left(p_{2, n}\right)\right\}\right.$. From set Ψ_{12} follows that the first move has to be $\left(s_{12,1} \omega_{1}, \ldots, s_{12, n} \omega_{n}\right) \vdash\left(s_{i, 1} \omega_{1}, \ldots, s_{i, n} \omega_{n}\right)$ for $i=1,2$, and for $\omega_{j} \in \Sigma_{12, j}$ with $j=1, \ldots, n$. Therefore, $\left(\omega_{1}, \ldots, \omega_{n}\right)$ is in $L\left(\vartheta_{12}\right)$ iff $\left(\omega_{1}, \ldots, \omega_{n}\right) \in L\left(\vartheta_{1}\right)$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in L\left(\vartheta_{2}\right)$-that is, $\left(\omega_{1}, \ldots, \omega_{n}\right) \in L\left(\vartheta_{12}\right)$ iff $\left(\omega_{1}, \ldots, \omega_{n}\right) \in L_{1} \cup L_{2}$.

4.2 Lemma

For $n \geq 2, n$-language $n-L=\left\{\left(a^{i} b^{j}, a^{j} b^{i}(, \varepsilon)^{(n-2)}\right): i, j=0,1, \ldots, m\right\}$ is not in $\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$.
Proof Idea: From definition of n-accepting move-restricted finite automata system, it can be seen that only chance how to compare symbols through components is read them step by step at the same time (or in a quasi parallel way). Hence, for comparing a s in the first component and $b s$ in the second one, the second component has to skip all as, and then the system can compare as and $b \mathrm{~s}$. After this, there is no possibility how to compare a s in the second component with b s in the first component because finite automata can not be returned on the start position. Similar problem becomes when the system starts with comparing $b s$ in the first component and $a s$ in the second one. The other components can not help, because they read no input symbols. Hence, $n-L$ is not belong to $\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$.

4.3 Corollary

$\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$ for all $n \geq 2$, is not close under intersection.
Proof: Consider two 2-languages $L_{1}=\left\{\left(a^{i} b^{j}, a^{j} b^{k}\right): i, j, k \geq 0\right\}$ and $L_{2}=\left\{\left(a^{i} b^{j}, a^{k} b^{i}\right): i, j, k \geq 0\right\}$. Both of them belong to $\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$, because we can construct $2-\mathrm{MAM}^{\mathrm{FA}}{ }_{\mathrm{s}} \vartheta_{1}=\left(M_{1}, M_{2}, \Psi_{1}\right)$ and $\vartheta_{2}=\left(M_{1}, M_{2}, \Psi_{2}\right)$ such that $L\left(\vartheta_{1}\right)=L_{1}$ and $L\left(\vartheta_{2}\right)=L_{2}$. All four automata are given by the definition $M=\left(\left\{q_{1}, q_{2}\right\},\{a, b\},\left\{r_{1}: q_{1} a \rightarrow q_{1}, r_{2}: q_{1} \rightarrow q_{1}, r_{3}: q_{1} b \rightarrow q_{2}, r_{4}: q_{2} b \rightarrow q_{2}, r_{5}: q_{2} \rightarrow\right.\right.$ $\left.\left.q_{2}\right\}, s_{i},\left\{q_{1}, q_{2}\right\}\right)$, and $\Psi_{1}=\left\{\left(r_{1}, r_{2}\right),\left(r_{3}, r_{1}\right),\left(r_{4}, r_{1}\right),\left(r_{5}, r_{3}\right),\left(r_{5}, r_{4}\right)\right\}$ and $\Psi_{2}=\left\{(p, q):(q, p) \in \Psi_{1}\right\}$. The intersection of $L\left(\vartheta_{1}\right)$ and $L\left(\vartheta_{2}\right)$ is 2-language $L_{3}=\left\{\left(a^{i} b^{j}, a^{j} b^{i}\right): i, j=0,1, \ldots, m\right\}$. Lemma 4.2 says that $L_{3} \notin \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$, and therefore, $\mathscr{L}\left(2-\mathrm{MAM}^{\mathrm{FA}}\right)$ is not close under intersection.
In general, for $n \geq 2$, consider n-languages $K_{1}=\left\{\left(a^{i} b^{j}, a^{j} b^{k}(, \varepsilon)^{n-2}\right): i, j, k \geq 0\right\}$ and $K_{2}=\left\{\left(a^{i} b^{j}\right.\right.$, $\left.\left.a^{k} b^{i}(, \varepsilon)^{n-2}\right): i, j, k \geq 0\right\}$. From Lemma 4.2, $K_{1} \cap K_{2} \notin \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$.

4.4 Corollary

$\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$ for all $n \geq 2$ is not close under complementation.
Proof: By contradiction. Suppose that $\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$ for all $n \geq 2$ is close under complementation. Let $L_{1}, L_{2} \in \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$. From Theorem 4.1 it follows that $L_{1} \cup L_{2} \in \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$, and by supposition, $\overline{\left(L_{1} \cup L_{2}\right)} \in \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$ as well. From De Morgan's law, $\overline{\left(L_{1} \cup L_{2}\right)}=\left(\overline{L_{1}} \cap \overline{L_{2}}\right)$, but it is contradiction, because $\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$ for all $n \geq 2$, is not close under intersection.

4.5 COROLLARY

$\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right) \subsetneq \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{PDA}}\right)$.
Proof: The inclusion $\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right) \subseteq \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{PDA}}\right)$ is clear from the definition of $n-\mathrm{MAM}^{\mathrm{FA}}$ and $n-\mathrm{MAM}^{\mathrm{PDA}}$. It remains to prove that $\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right) \neq \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{PDA}}\right)$.
Consider $2-$ MAM $^{\text {PDA }}, \vartheta=\left(M_{1}, M_{2}, \Psi_{1}\right)$ with $\Psi=\{(1,1),(2,2),(3.2),(4,3),(5,3),(6,3),(7,3)$, $(8,4),(9,1)\})$ and the pushdown automata defined in the following way: $M_{1}=(\{s, q\},\{a, b\},\{\#, a\}$, $\{1 . \# s \rightarrow s, 2 . \# s a \rightarrow \# a s, 3 . a s a \rightarrow a a s, 4 . \# s b \rightarrow \# q, 5 . a s b \rightarrow \# q, 6 . \# q b \rightarrow \# q, 7 . a q b \rightarrow \# q, 8 . a q \rightarrow q$, $9 . \# q \rightarrow q\}, s, \#, \emptyset)$ and $M_{2}=(\{s\},\{a, b\},\{\#\},\{1 . \# s \rightarrow s, 2 . \# s \rightarrow \# s, 3 . \# s a \rightarrow \# s, 4 . \# s b \rightarrow \# s\}, s, \#, \emptyset)$. It is not hard to see that ϑ define 2-language $L=\left\{\left(a^{i} b^{j}, a^{j} b^{i}\right): i, j=0,1, \ldots, m\right\}$ and works in this way: first, automaton M_{2} loops in state s and reads no symbol, while M_{1} shifts all as onto the pushdown. After pushing all a s from the M_{1} 's input onto the pushdown, M_{1} and M_{2} read $b \mathrm{~s}$ and $a \mathrm{~s}$, respectively, and by reading them at the same time, automata compare their number. If there is more a s in M_{2} 's input than b s in M_{1} 's input, then the automata system is stoped and input is not accepted. Otherwise, M_{1} skips to the other state and ϑ continues with comparing a 's on the M_{1} 's pushdown and b 's in the M_{2} 's input by removing a from the pushdown in M_{1} and reading b 's from M_{2} 's input. Only if the input was of the form $\left(a^{i} b^{j}, a^{j} b^{i}\right)$ with $i, j=0,1, \ldots, m$, the automata system removes symbols \# from M_{1} 's and M_{2} 's pushdowns, and ϑ accepts. Because Lemma 4.2 says that $L=\left\{\left(a^{i} b^{j}, a^{j} b^{i}\right): i, j=\right.$ $0,1, \ldots, m\}$ is not in $\mathscr{L}\left(2-\mathrm{MAM}^{\mathrm{FA}}\right), \mathscr{L}\left(2-\mathrm{MAM}^{\mathrm{FA}}\right) \neq \mathscr{L}\left(2-\mathrm{MAM}^{\mathrm{PDA}}\right)$. In general, for $n \geq 2$, there are n-languages $L=\left\{\left(a^{i} b^{j}, a^{j} b^{i}(, \varepsilon)^{(n-2)}\right): i, j=0,1, \ldots, m\right\}$. These n-languages can be given by $n-$ MAM $^{\text {PDA }}$, where the first two components are defined in the same way as M_{1} and M_{2} was. The other components loops without reading any symbols. Only in the last step, automata remove symbols \# from their pushdowns. Hence, $L=\left\{\left(a^{i} b^{j}, a^{j} b^{i}(, \varepsilon)^{(n-2)}\right): i, j=0,1, \ldots, m\right\} \in \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{PDA}}\right)$ that is, $\mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right) \neq \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{PDA}}\right)$.

4.6 THEOREM

If L_{1} and $L_{2} \in \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$, then $L_{1} \cdot L_{2} \in \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$, where $L_{1} \cdot L_{2}=\left\{\left(w_{1} w_{1}^{\prime}, \ldots, w_{n} w_{n}^{\prime}\right)\right.$: $\left(w_{1}, \ldots, w_{n}\right) \in L_{1}$ and $\left.\left(w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right) \in L_{2}\right\}$.

Proof: Consider two n-languages L_{1} and L_{2}. If L_{1} and $L_{2} \in \mathscr{L}\left(n-\mathrm{MAM}^{\mathrm{FA}}\right)$, then there are $n-$ $\mathrm{MAM}^{\mathrm{FA}} \mathrm{s}_{\mathrm{s}}, \vartheta_{1}=\left(M_{1,1}, \ldots, M_{1, n}, \Psi_{1}\right)$ and $\vartheta_{2}=\left(M_{2,1}, \ldots, M_{2, n}, \Psi_{2}\right)$, such that $L_{1}=L\left(\vartheta_{1}\right), L_{2}=L\left(\vartheta_{2}\right)$ and for all $i=1,2$ and $j=1, \ldots, n, M_{i, j}=\left(Q_{i, j}, \Sigma_{i, j}, \delta_{i, j}, s_{i, j}, F_{i, j}\right)$ is a component of ϑ_{i}. For these two automata systems, we can construct $\vartheta_{12}=\left(M_{12,1}, \ldots, M_{12, n}, \Psi_{12}\right)$, with $M_{12, j}=\left(Q_{12, j}, \Sigma_{12, j}, \delta_{12, j}\right.$, $\left.s_{1, j}, F_{2, j}\right)$), in the following way: for every $i=1,2$ and $j=1, \ldots, n, Q_{12, j}=Q_{1, j} \cup Q_{2, j}, \delta_{12, j}=\delta_{1, j} \cup$ $\delta_{2, j} \cup\left\{p_{j} . f_{j} \rightarrow s_{2, j}: f_{j} \in F_{1, j}\right\}, \Psi_{12}=\Psi_{1} \cup \Psi_{2} \cup\left\{\left(p_{1}, \ldots, p_{n}\right)\right\}$, and $\Sigma_{12, j}=\Sigma_{1, j} \cup \Sigma_{2, j}$. From Definition 3.4, $\left(w_{1}, \ldots, w_{n}\right) \in L_{1}$ iff $\left(s_{1,1} w_{1}, \ldots, s_{1, n} w_{n}\right) \vdash^{*}\left(f_{1}, \ldots, f_{n}\right)$, where for all $i=1, \ldots, n, f_{i} \in F_{1, i}$, in ϑ_{1}. Clearly, $\left(s_{1,1} w_{1}, \ldots, s_{1, n} w_{n}\right) \vdash^{*}\left(f_{1}, \ldots, f_{n}\right)$ in ϑ_{12} as well, and obviously, $\left(s_{1,1} w_{1} w_{1}^{\prime}, \ldots, s_{1, n} w_{n} w_{n}^{\prime}\right)$ $\vdash^{*}\left(f_{1} w_{1}^{\prime}, \ldots, f_{n} w_{n}^{\prime}\right)$. As $\left(w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right) \in L_{2}$ and because $\left(f_{1} \rightarrow s_{2,1}, \ldots, s_{2, n}\right) \in \Psi_{12},\left(f_{1} w_{1}^{\prime}, \ldots, f_{n} w_{n}^{\prime}\right) \vdash$ $\left(s_{2,1} w_{1}^{\prime}, \ldots, s_{2, n} w_{n}^{\prime}\right)$. Naturaly, $\left(s_{2,1} w_{1}^{\prime}, \ldots, s_{2, n} w_{n}^{\prime}\right) \vdash^{*}\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)$ with $f_{i}^{\prime} \in F_{2, i}$ in ϑ_{2}. Hence, $\left(s_{1,1} w_{1} w_{1}^{\prime}\right.$,
$\left.\ldots, s_{1, n} w_{n} w_{n}^{\prime}\right) \vdash^{*}\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)$ in ϑ_{12}. The theorem holds.

5 CONCLUSION

In this paper, we defined the new type of n-accepting move-restricted automata system with finite automata. On the class of n-languages defined by the system, we showed some fundamental closure properties. Specifically, the class of n-languages defined by n-accepting move-restricted pushdown automata system is closed over concatenation and union, and on the other hand, it is not closed over intersection and complement. Futhermore, we showed that the n-accepting move-restricted finite automata system is weaker than the n-accepting move-restricted pushdown automata system. Beside of examined closure properties, there are many other closer properties, which make an open research area. Especially, very useful it can be closure properties over n-union, n-intersection, and n-shuffle, where n before operators means that operators are used on each component. For example, n-union of $L_{1}=\left\{\left(w_{1}, \ldots, w_{n}\right)\right\}$ and $L_{2}=\left\{\left(w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right)\right\}$ is n-language $L_{3}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in\left\{w_{i}, w_{i}^{\prime}\right\}\right.$ for all $i=$ $1, \ldots, n\}$.

6 ACKNOWLEDGEMENTS

This work was supported by the research plan MSM0021630528 and by MŠMT grant MEB041003.

REFERENCES

[1] R. Alur. Formal analysis of hierarchical state machines. Lecture Notes in Computer Science, 2772/2004:434-435, 2004.
[2] R. Lukás. Power of multigenerative grammar systems. In Second Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS 2006), pages 99-104, 2006.
[3] R. Lukáš and A. Meduna. Multigenerative grammar systems. In Pre-proceedings 1st Doctoral Workshop on Mathematical and Engineering Methods in Comupter Science (MEMICS 2005), pages 85-87. Faculty of Informatics MU, 2005.
[4] C. Martín and V. Mitrana. Parallel communicating automata systems. Journal of Applied Mathematics and Computing, pages 237-257, 2008.
[5] A. Meduna and R. Lukáš. Multigenerative grammar systems. Schedae Informaticae, 2006(15):175-188, 2006.
[6] M. Meduna. Automata and Languages: Theory and Applications. Springer-Verlag, London, 2000.
[7] M. H. ter Beek, E. Csuhaj-Varjú, and V. Mitrana. Teams of pushdown automata. Int. J. Comput. Math., 81(2):141-156, 2004.
[8] M. Čermák. Power decreasing derivation restriction in grammar systems. In Proceedings of the 15th Conference and Competition STUDENT EEICT 2009 Volume 4, pages 385-389. Faculty of Information Technology BUT, 2009.
[9] M. Čermák. Multilanguages and multiaccepting automata system. In Proceedings of the 16th Conference and Competition STUDENT EEICT 2010 Volume 5, pages 146-150. Faculty of Information Technology BUT, 2010.

